
J
H
E
P
1
1
(
2
0
0
8
)
0
6
6

Published by IOP Publishing for SISSA

Received: July 23, 2008

Revised: October 14, 2008

Accepted: November 6, 2008

Published: November 21, 2008

Spiky strings on AdS4 × CP3

Bum-Hoon Lee,a Kamal L. Panigrahib and Chanyong Parkac

aCenter for Quantum Spacetime (CQUeST), Sogang University,

Seoul 121-742, Korea
bDepartment of Physics, Indian Institute of Technology Guwahati,

Guwahati-781 039, India
cNational Institute for Mathematical Sciences,

Daejeon 305-340, Korea

E-mail: bhl@sogang.ac.kr, panigrahi@iitg.ernet.in, cyong21@sogang.ac.kr

Abstract: We study a giant magnon and a spike solution for the string rotating on

AdS4×CP3 geometry. We consider rigid rotating fundamental string in the SU(2)×SU(2)

sector inside the CP3 and find out the general form of all the conserved charges. We find

out the dispersion relation corresponding to both the known giant magnon and the new

spike solutions. We further study the finite size correction in both cases.

Keywords: Long strings, Gauge-gravity correspondence.

c© SISSA 2008

mailto:bhl@sogang.ac.kr
mailto:panigrahi@iitg.ernet.in
mailto:cyong21@sogang.ac.kr
http://jhep.sissa.it/stdsearch


J
H
E
P
1
1
(
2
0
0
8
)
0
6
6

Contents

1. Introduction and summary 1

2. Rotating strings on R× S2 × S2 2

3. Giant magnon and spike solutions 6

3.1 Giant magnon solution 7

3.2 Spike solution 7

4. Finite size effects 8

5. Discussions 11

1. Introduction and summary

The AdS/CFT duality [1] relates type IIB string theory on AdS5× S5 with N = 4 super-

conformal Yang-Mills (SYM) theory, and it has been celebrated in the last decade as one of

the exact duality between string and gauge theory. Recently there has been a lot of works

devoted towards the understanding of the worldvolume dynamics of multiple M2-branes,

initiated by Bagger, Lambert and Gustavsson [2] based on the structure of Lie 3-algebra. In

this new development of understanding of the worldvolume theory of coincident M-branes

in M-theory, a new class of conformal invariant 2+1 dimensional field theories has been

found out. Based on this Aharony, Bergman, Jafferis and Maldacena (ABJM) [3] proposed

a new gauge-string duality between N = 6 Chern-Simons theory and type IIA string the-

ory on AdS4 × CP3. More precisely, ABJM theory has been conjectured to be dual to

M-theory on AdS4 × S7/Zk with N units of four-form flux which for k ≪ N ≪ k5 can be

compactified to type IIA theory on AdS4×CP3, where k is the level of Chern-Simon theory

with gauge group SU(N). This ABJM theory is weakly coupled for λ≪ 1, where λ = N/k

is the ’t Hooft coupling. Once this duality was proposed, there has been a numerous effort

in understanding the ABJM theory more [4]–[28].

In the development of AdS5/CFT4 duality, an interesting observation is that the N = 4

SYM theory in planar limit can be described by an integrable spin chain model where

the anomalous dimension of the gauge invariant operators were found [29 – 33]. It was

further noticed that the string theory is also integrable in the semiclassical limit [34 –

38] and the anomalous dimension of the N = 4 SYM can be derived from the relation

between conserved charges of the rotating string AdS5× S5. In this connection, Hofman

and Maldacena (HM) [39] considered a special limit where the problem of determining the

spectrum in both sides becomes rather simple. The spectrum consists of an elementary
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excitation known as magnon that propagates with a conserved momentum p along the

infinitely long [40 – 45, 35, 46 – 51] or the finitely long [22, 52 – 54] spin chain. In the dual

formulation, the most important ingredient is the semiclassical string solution, which can

be mapped to long trace operator with large energy and large angular momenta. A more

general class of rotating string solutions are the spiky strings [55, 56] that describe the

higher twist operators from the field theory view point. Giant magnon solutions could be

thought of as a special limit of such spiky strings with shorter wavelength. Recently there

has been a lot of work devoted for finding the giant magnon and spike solutions for strings

in more general background, (see for example [57 – 61]).

The integrability of AdS5/CFT4 in the planar limit using a Bethe ansatz brings us

the hope that the recently proposed AdS4/CFT3 duality will also be solvable by using a

similar ansatz [9]. Indeed, in [9, 10, 12, 13] this has been investigated and many interesting

results were found. The magnon solutions were found in the SU(2) × SU(2) sub-sector

of CP3. For example the giant magnon found in [15, 21] is a solitonic string living on

R×S2×S2 and rotating uniformly around the two spheres. In the present paper we would

like to find out a spike solution for the string rotating on S2 × S2, and interpret it as a

general class of solution in the worldsheet theory. We solve the equations of motion and

the Virasoro constraints for the Polyakov action of the string. We write down the general

form of equations of motion which in two different limits corresponds to the already known

giant magnon and the new spike solution for the string moving in the SU(2) × SU(2).

The dispersion relations among the various conserved charges have been found out in both

cases. We further study the finite size corrections to the dispersion relations.

The rest of the paper is organized as follows. In section 2. we consider a rotating string

solution on R × S2 × S2, which is obtained by fixing some coordinates of AdS4 × CP3.

Taking into account the Polyakov form of the action for the string in this background, we

find the general forms of all conserved charges. In section 3, we find out the giant magnon

and spike as two different limiting cases and write the dispersion relation along various

conserved charges. For the magnon case, we reproduce the result obtained in [15, 21].

Section 4 is devoted to the study of finite size effects for both the giant magnon and spike

solutions. In section 5, we present our conclusions.

2. Rotating strings on R × S
2 × S

2

In this section, we will investigate a general class of rotating string solution on R×S2×S2

which is a subspace of AdS4 ×CP3. We start by writing down the metric for AdS4 ×CP3

ds2 =
1

4
R2
[

− cosh2 ρ dt2 + dρ2 + sinh2 ρ
(

dθ2 + sin2 θdφ2
)]

+R2

[

dξ2 + cos2 ξ sin2 ξ

(

dψ +
1

2
cos θ1dφ1 −

1

2
cos θ2dφ2

)2

+
1

4
cos2 ξ

(

dθ2
1 + sin2 θ1dφ

2
1

)

+
1

4
sin2 ξ

(

dθ2
2 + sin2 θ2dφ

2
2

)

]

. (2.1)

– 2 –



J
H
E
P
1
1
(
2
0
0
8
)
0
6
6

While taking α′ = 1, the curvature radius R is given by R2 = 25/2πλ1/2. The ’t Hooft

coupling constant is λ ≡ N/k where k is the level of the 3-dimensional N = 6 ABJM model.

To investigate the string theory dual to spin chain model of SU(2) sector in the bound-

ary SYM, we first consider the string moving in R × S2 × S2, which is the subspace of

R×CP3 and corresponds to the SU(2)×SU(2) R-symmetry group of the boundary SYM.

This subspace can be obtained by choosing ρ = 0, ψ and ξ =constant and then giving

the identification θ1 = θ2 ≡ θ and φ1 = φ2 ≡ φ. Note that this identification reduces

R × S2 × S2 to R × S′2 effectively, where S′2 can be parameterized by θ = 1
2 (θ1 + θ2)

and φ = 1
2 (φ1 + φ2) and corresponds to the diagonal SU(2) subgroup of SU(2) × SU(2)

R-symmetry.

More precisely, the action for string moving in R×CP3, where R is the time direction

on AdS4 at ρ = 0, is

S =
R2

16π

∫

d2σ
[

−∂αt∂
αt+ 4∂αξ∂

αξ + 4cos2 ξ sin2 ξΓαΓα

+ cos2 ξ(∂αθ1∂
αθ1 + sin2 θ1∂αφ1∂

αφ1)

+ sin2 ξ(∂αθ2∂
αθ2 + sin2 θ2∂αφ2∂

αφ2)
]

(2.2)

with

Γα = ∂αψ +
1

2
cos θ1∂αφ1 −

1

2
cos θ2∂αφ2, (2.3)

where α, β implies the string worldsheet indices. The equations of motion for ξ and ψ are

0 = 4∂α∂αξ − 4 sin 2ξ cos 2ξΓαΓα + sin ξ cos ξ(∂αθ1∂
αθ1

+ sin2 θ1∂αφ1∂
αφ1 − ∂αθ2∂

αθ2 − sin2 θ2∂αφ2∂
αφ2),

0 = ∂α(cos2 ξ sin2 ξΓα). (2.4)

When ψ = constant, θ1 = θ2 and φ1 = φ2 gives Γα = 0, which satisfies the second

equation in eq. (2.4) and reduces the first equation to a simple form 0 = 4∂α∂αξ. The

simplest solution of this is ξ = constant. Under these solutions, the open string motion on

CP3 reduces to that on S′2 effectively. Therefore, the rest equations of motion for other

fields become

0 = ∂α∂αt,

0 = ∂α∂αθ − 2 sin θ cos θ∂αφ∂
αφ,

0 = ∂α
(

sin2 θ∂αφ
)

. (2.5)

Note that these equations are those for the string sigma model moving on R×S2×S2 with

constraints θ1 = θ2 = θ and φ1 = φ2 = φ.

The reduction from CP3 to S2 × S2 can be shown with different way using the com-

plex coordinates. For that, we first consider the embedding S7 to R8. Then, S7 can be

described by the constraint equation, in terms of complex coordinates Zi (i = 1, · · · , 4) or

real coordinates Xa (a = 1, · · · , 8) on the 8-dimensional Euclidean space,

R2

4
=

4
∑

i=1

|Zi|2 =
8
∑

a=1

X2
a , (2.6)
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where we set Zi = Xi + iXi+4. Imposing more constraint

0 =
i

2

4
∑

i=1

(Zi∂αZ̄i − Z̄i∂αZi) =

4
∑

i=1

(Xi∂αXi+4 −Xi+4∂αXi), (2.7)

where α implies the world sheet indices, reduces the above S7 to CP3 [21]. The complex

coordinates representing S2 × S2 become in terms of the angular variables in eq. (2.5),

Z1 =
R

2
cos ξ sin θeiφ,

Z2 =
R

2
cos ξ cos θ,

Z3 =
R

2
sin ξ sin θe−iφ,

Z4 =
R

2
sin ξ cos θ, (2.8)

where ξ is a constant. This parameterization satisfies the constraint for S7 and to satisfy

the constraint for CP3 in eq. (2.7) we should set ξ = π
4 . This effectively describes S′2 as

the subspace of CP3.

The Polyakov action for a string moving on this R× S2 × S2 is given by

S =
1

4π

∫

d2σ
√
−deth hαβ∂αx

µ∂βx
νGµν , (2.9)

with the metric

ds2 =
1

4
R2
[

−dt2 + cos2 ξ
(

dθ2
1 + sin2 θ1dφ

2
1

)

+ sin2 ξ
(

dθ2
2 + sin2 θ2dφ

2
2

)]

, (2.10)

which reduces to R× S′2 under the identification, θ1 = θ2 and φ1 = φ2.

In terms of target space coordinates in the conformal gauge hαβ = ηαβ , the effective

action on R× S′2 is written as

S =
T

2

∫

d2σ
[

(∂τ t)
2 − (∂σt)

2 − (∂τθ)
2 + (∂σθ)

2 − sin2 θ
{

(∂τφ)2 − (∂σφ)2
}]

, (2.11)

where the string tension T is given by

T =

√
2λ

2
. (2.12)

To find the giant magnon or spike solutions for string, we choose the

following parametrization

t = f(τ),

θ1 = θ2 = θ(y),

φ1 = φ2 = φ = ντ + g(y), (2.13)

where y = aτ + bσ and τ and σ run from −∞ to ∞.
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Due to the translation symmetry along t and the rotational symmetry along φi’s (i =

1, 2), there exist three conserved charges and the equations of motion for the corresponding

fields are given by

0 = ∂2
τ f(τ),

0 = ∂y

[

sin2 θ
{

aν + (a2 − b2)g′
}]

, (2.14)

where prime implies derivative with respect to y. The solutions of these equations are

f(τ) = κτ ,

g′(y) =
1

a2 − b2
c− aν sin2 θ

sin2 θ
, (2.15)

where κ and c are integration constants. The equation of motion for the world sheet metric

hαβ , gives rise to the Virasoro constraints Tαβ = 0 where

Tαβ ≡ 1√
−deth

∂L
∂hαβ

=
T

2

(

∂αx
µ∂βx

νGµν − 1

2
ηαβη

α′β′

∂α′xµ∂β′xνGµν

)

. (2.16)

Due to the symmetric property of the metric, the independent constraints are three, Tττ ,

Tτσ and Tσσ. Furthermore, the conformal nature of the Polyakov action gives rise to the

relation Tττ = Tσσ, so only two of them are independent. For later convenience, these two

Virasoro constraints are rewritten as

0 = Tττ + Tσσ + 2Tτσ ,

0 = Tττ + Tσσ − a2 + b2

ab
Tτσ. (2.17)

The first line of eq. (2.17) gives a first order differential equation for θ,

θ′ =
bν

a2 − b2

√

(sin2 θmax − sin2 θ)(sin2 θ − sin2 θmin)

sin θ
, (2.18)

where sin θmax and sin θmin satisfy

sin2 θmax + sin2 θmin =
κ2(a− b)2 + 2bνc

b2ν2
,

sin2 θmax · sin2 θmin =
c2

b2ν2
. (2.19)

The second line of eq. (2.17) reduced to a relation among various constants. From this,

one can find

a =
ν

κ2
c. (2.20)

Using this, we finally obtain

θ′ =
bν

a2 − b2

√

( c2

κ2b2
− sin2 θ)(sin2 θ − κ2

ν2 )

sin θ
. (2.21)
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Now let us proceed to write various conserved charges for this system. The energy is

given by

E ≡ T

∫

dσ∂τ t

= 2T

∫ θmax

θmin

dθ
κ(a2 − b2)

b2ν

sin θ
√

(sin2 θmax − sin2 θ)(sin2 θ − sin2 θmin)
(2.22)

and two angular momenta are

J1 ≡ −T cos2 ξ

∫

dσ sin2 θ∂τφ

= −2T

∫ θmax

θmin

dθ
1

2b2ν

sin θ(ac− b2ν sin2 θ)
√

(sin2 θmax − sin2 θ)(sin2 θ − sin2 θmin)
,

J2 ≡ −T sin2 ξ

∫

dσ sin2 θ∂τφ

= −2T

∫ θmax

θmin

dθ
1

2b2ν

sin θ(ac− b2ν sin2 θ)
√

(sin2 θmax − sin2 θ)(sin2 θ − sin2 θmin)
. (2.23)

Note that J1 and J2 are angular momentum on each sphere S2. To consider a giant magnon

or spike solution, we have to define the world sheet momentum p, which is identified with

the angle difference ∆φ ≡ p,

∆φ ≡ −
∫

dφ = −2

∫ θmax

θmin

dθ
g′

θ′

= −2

∫ θmax

θmin

dθ
1

b2ν

(bc− abν sin2 θ)

sin θ
√

(sin2 θmax − sin2 θ)(sin2 θ − sin2 θmin)
, (2.24)

where we use a minus sign for making the angle difference positive.

3. Giant magnon and spike solutions

By using various quantities defined in the previous section, we now proceed to find the

relation among various conserved charges. Before doing this, first we choose the infinite

size limit, which implies infinite angular momentum in case of giant magnon and infinite

angle between two end points of a spike. Note that this infinite size limit can be described

by setting sin θmax = 1 in both cases. In this case, eq. (2.18) is reduced to

θ′ =
bν

a2 − b2
cos θ

√

(sin2 θ − sin2 θmin)

sin θ
. (3.1)

Due to the cosine term in the above equation, all the conserved charges diverge except for

a special region of parameters. Below, we will investigate the solutions in this region.
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3.1 Giant magnon solution

In this section, we will consider a magnon solution which has infinite charges, E and

J ≡ J1 +J2, but finite difference of them, E−J . For this, we should choose from eq. (2.21)

sin θmax = −κ
ν
, (3.2)

where the minus sign is inserted for later consistency. In the infinite size limit ν can be

rewritten as

ν = −κ, (3.3)

where we assume that κ is positive. Using eq. (2.20) and eq. (3.3), E − J is given by

E − J = 2T

∫ π/2

θmin

dθ
sin θ cos θ

√

(sin2 θ − sin2 θmin)
= 2T

√

1 − sin2 θmin, (3.4)

where sin θmin = c/κb. Note that E − J has no divergence like our expectation. The value

of the world sheet momentum p corresponding to the angle difference is also obtained using

eq. (2.20) and eq. (3.3)

∆φ = 2

∫ π/2

θmin

dθ
c

κb

cos θ

sin θ
√

(sin2 θ − sin2 θmin)
= 2arccos(sin θmin). (3.5)

Finally, we obtain the dispersion relation for a giant magnon as

E − J =
√

2λ
∣

∣

∣
sin

p

2

∣

∣

∣
, (3.6)

where we replace the string tension T with the ’t Hooft coupling λ. This is the dispersion

relation for an open string rotating in S′2 effectively, which is dual to the open spin chain

in the SU(2) diagonal R-symmetry subgroup.

In ref. [12, 15], a single trace operator corresponding to a closed spin chain in SU(2)×
SU(2) sector is considered. Moreover, it was shown that the dual string solution for this

closed spin chain is a closed string rotating in S2 ×S2, which is a combination of two open

strings, each rotating on different S2. In ref. [12, 15, 21], the open string corresponding to

half of the closed string has also the same dispersion relation in eq. (3.6) but the angular

momentum J is given by J = J1 or J2. However, in this case the giant magnon describes not

the open spin chain in the diagonal SU(2) but that in one of the SU(2) inside SU(2)×SU(2)

R-symmetry group.

3.2 Spike solution

To find a spike solution, we should impose that J is finite. For this, we choose sin θmax = c
κb

in eq. (2.21). In the infinite size limit, κ can be rewritten as in terms of c and b

κ =
c

b
. (3.7)

Then, sin θmin becomes

sin θmin =
c

bν
(3.8)
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Using these, E − T∆φ and J become

E − T∆φ = 2T

∫ π/2

θmin

dθ
sin θmin cos θ

sin θ
√

(sin2 θ − sin2 θmin)
= 2Tarccos(sin θmin),

J = −2T

∫ π/2

θmin

dθ
sin θ cos θ

√

(sin2 θ − sin2 θmin)
= −2T

√

1 − sin2 θmin. (3.9)

Notice that if the orientation of the rotation in φi-direction (i = 1, 2), is changed, then we

can obtain a positive J . From now on, we consider a positive J . Then, E − T∆φ and J

can be rewritten in terms of new variable θ̃ = π/2 − θmin as

E − T∆φ =
√

2λθ̃,

J =
√

2λ sin θ̃, (3.10)

with J = J1 + J2

J1 =

√
2λ

2
sin θ̃,

J2 =

√
2λ

2
sin θ̃. (3.11)

4. Finite size effects

In the previous section, we found a giant magnon and a spike solution in the infinite size

limit. Here, we will investigate the finite size effect on them.1 To do so, we have to

investigate the solitonic string solution when θmax 6= π/2.

Giant magnon case: for the magnon case, sin θmin and sin θmax become

sin θmax = −κ
ν
,

sin θmin =
c

κb
, (4.1)

For the simple calculation, we replace the variable θ to z ≡ cos θ. With this new variable

z, the conserved charges are rewritten as

E = 2T
z2
max − z2

min

zmax

√

1 − z2
min

K(x),

J = 2Tzmax [K(x) − E(x)] ,

∆φ

2
=

√

1 − z2
min

zmax

√

1 − z2
max

Π

(

z2
max − z2

min
√

z2
max − 1

;x

)

−
√

1 − z2
max

zmax

√

1 − z2
min

K(x), (4.2)

1Finite size effect for the membrane in AdS4× S7 has been investigated in ref. [62].
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by using the elliptic integrals of the first, second and third kinds

K(x) =

∫ zmax

zmin

dz
zmax

√

(z2
max − z2)(z2 − z2

min)
,

E(x) =

∫ zmax

zmin

dz
z2

zmax

√

(z2
max − z2)(z2 − z2

min)
,

Π

(

z2
max − z2

min
√

z2
max − 1

;x

)

=

∫ zmax

zmin

dz
zmax(1 − z2

max)

(1 − z2)
√

(z2
max − z2)(z2 − z2

min)
, (4.3)

where z2
max ≡ cos2 θmin = k2b2−c2

κ2b2
, z2

min ≡ cos2 θmax = ν2−κ2

ν2 and x =

√

1 − z2

min

z2
max

. The

expansion of the conserved charges to O(z2
min) and O(z2

max), gives rise to

E − J ≈ 2T

(

∣

∣

∣
sin

p

2

∣

∣

∣
− zmaxz

2
min

4

)

. (4.4)

The leading behaviors of E and zmax are given by

E ≈ 2Tzmax log
4zmax

zmin
,

zmax ≈
∣

∣

∣
sin

p

2

∣

∣

∣
. (4.5)

Using these relations, we finally obtain the approximate form of the dispersion relation for

a magnon with the finite size correction

E − J = 2T
(∣

∣

∣
sin

p

2

∣

∣

∣
− 4

∣

∣

∣
sin3 p

2

∣

∣

∣
e−E/(T |sin p

2
|))

=
√

2λ
(∣

∣

∣
sin

p

2

∣

∣

∣
− 4

∣

∣

∣
sin3 p

2

∣

∣

∣
e−2E/(

√
2λ|sin p

2
|)) . (4.6)

For the infinite size case E and J → ∞, this gives the same result obtained in the previous

section. The second term in the above equation is the finite size correction. Note that

this result is the finite correction for a giant magnon dual to open spin chain and that this

correction corresponds to half of that for the closed string [21].

Spike case: in this section, we will calculate the finite size effect for a spike. Note that

as previously mentioned, for considering a positive angular momentum, we should consider

the angular momentum for a spike as J ′ ≡ −J by changing the directions of rotation.

Keeping this in mind, we now start to calculate the finite size effect for a spike. For the

spike, sin θmin and sin θmax are given by

sin θmin ≡
√

1 − z2
max =

κ

ν
,

sin θmax ≡
√

1 − z2
min =

c

κb
. (4.7)

Note that in the infinite size limit, this parameterization reduces to the one used in the

previous section, κ = c
b and sin θmin = c

bν .
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Using these, the conserved charges can be rewritten as

E = 2T
z2
max − z2

min

zmax

√

1 − z2
max

K(x),

J ′ = 2T
1

zmax

(

z2
maxE(x) − z2

minK(x)
)

,

∆φ

2
=

√

1 − z2
min

zmax

√

1 − z2
max

[

K(x) − Π

(

z2
max − z2

min
√

z2
max − 1

;x

)]

. (4.8)

Here, the angular momentum J ′ is given by

J ′ ≈ 2Tzmax −
(

1

2
+ log

4zmax

zmin

)

Tz2
min

zmax
, (4.9)

at O(z2
min). Note that for the infinite size limit, zmin → 0, the second term in the right

hand side vanishes, so J ′ is always finite as it should be. The dispersion relation for a spike

E − ∆φ is given by up to O(z3
min) and O(z3

max) as

E − T∆φ ≈ 2T arcsin zmax

−
[(

1

2zmax
− zmax

4

)

T +

(

1

zmax
+
zmax

2

)

T log
4zmax

zmin

]

z2
min. (4.10)

Using eq. (4.9), 2T arcsin zmax can be approximately rewritten as

2T arcsin zmax ≈ 2T arcsin
J ′

2T
+

1
2 + log 4zmax

zmin

zmax

√

1 − J ′2

4T 2

Tz2
min. (4.11)

To rewrite the dispersion relation in terms of the physical quantities, zmin and zmax should

be replaced with E and J ′. From the leading term of E we obtain

zmin = 4zmaxe
−E/2Tzmax (4.12)

and the leading term of J ′ gives

zmax =
J ′

2T
. (4.13)

Using these, we finally obtain the dispersion relation for a finite size spike solution

E − T∆φ ≈ 2T arcsin
J ′

2T
−
[(

4 − 4
√

1 − (J ′/2T )2
− J ′2

2T 2

)

J ′

+

(

8 − 8
√

1 − (J ′/2T )2
+
J ′2

T 2

)

E

]

e−2E/J ′

. (4.14)

In the infinite size limit, since the spike has infinite E and ∆φ with the finite J ′, the above

result gives rise to the same dispersion relation obtained in previous section

E − T∆φ ≈ 2T arcsin zmax = 2T
(π

2
− θmin

)

. (4.15)
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The second term in eq. (4.14) corresponds to the finite size effect for a spike. For zmax ≪ 1

(T ≫ J ′), the above dispersion relation reduces to

E − T∆φ ≈ 2T arcsin
J ′

2T
+

(

1 +
3J ′E

8T 2

)

J ′3

T 2
e−2E/J ′

, (4.16)

where T =
√

2λ
2 .

5. Discussions

We have studied, in this paper, the rotating string in the diagonal SU(2) inside AdS4×CP3.

We have solved the most general form of the equations of motion of the rotating string on

R× S2 × S2, and have found out the most general form of all conserved charges. We have

shown the existence of both the already known giant magnon, and the new spike solutions

for the string and have found out the relevant dispersion relation among various charges

in the infinite size limit. Furthermore, we have studied the finite size correction in both

cases. It will be interesting to find out a three spin giant magnon with one spin along

the AdS4 and two angular momenta one in each of S2 and study the dual gauge theory.

Another interesting aspect will be to write down the semiclassical scattering of the giant

magnon and spike solutions on AdS4×CP3. We wish to come back to some of these issues

in future.
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